

Acute Toxicity of Sodium Metabisulphite in Larvae and Post-Larvae of the Land Crab, *Cardisoma guanhumi*

Orlando B. S. Galli · Rodrigo Y. Fujimoto · Fernando A. Abrunhosa

Received: 10 February 2012/Accepted: 10 May 2012/Published online: 29 May 2012
© Springer Science+Business Media, LLC 2012

Abstract Sodium metabisulphite (SMB) is used in marine shrimp aquaculture to prevent the occurrence of black spot. The release SMB into the estuarine environment from shrimp farm pond effluents has been reported. This study evaluated the susceptibility of larvae and post-larvae of land crab, *Cardisoma guanhumi* to this salt. A decrease in dissolved oxygen and pH occurred with increasing concentration of SMB and exposure time. LC₅₀ values after 48 h of exposure were 34 ± 1.1 mg/L, 31.1 ± 1.9 mg/L, and 30.6 ± 0.5 mg/L for I zoea larvae, megalopa larvae and stage I juveniles, respectively.

Keywords Sodium metabisulfite · Blue land crab · Brachyura · LC₅₀ · Neotropical species

Marine shrimp farming has grown into one of the largest and most import aquaculture activities in Brazil (Rodrigues 2005; FAO 2006). However, a negative environmental impact, affecting important mangrove areas, estuary and bays, is associated with this activity (Macintosh and Phillips 1992; Phillips et al. 1993; Primavera 1994; Clay 1997). One of the main problems associated with shrimp farms is the discharge of sodium metabisulphite (SMB) from farm

ponds (Barbiere Jr and Ostrensky 2002). This salt is largely used to avoid melanosis, also called black spot, in marine shrimp. It also inhibits the proliferation of microorganisms, an attribute that, together with its antioxidant property, validates the wide use of sodium metabisulphite by the food industry (Jamieson et al. 1985; Carvalho et al. 2011). Although the American Agency of Food and Drugs (FDA) has recommended 6.25 kg of SMB to 500 L water (12.5 g/L), shrimp farms in Brazil have largely ignored this guideline under the excuse that the recommended concentration is not enough to inhibit melanosis. The actual concentrations used by farmers ranges from 25 to 50 kg metabisulphite for 500 L water (50 g a 100 g/L) (Valença and Mendes 2004). The SMB reacts with the oxygen dissolved in water, releasing the gas sulphur dioxide (SO₂). This combines readily with water, resulting in acidic substances such as sulfuric acid (H₂SO₄), sulfurous acid (H₂SO₃) (Nickelson and Cox 1977; Fazio and Warner 1990; Atkinson et al. 1993) and sodium acid sulfate (NaHSO₄) (Ogawa et al. 1983, 1985). The release of SMB in water bodies without previous treatment may result in the deaths of estuarine animals, mainly fish and crabs, causing trophic alterations in the ecosystem (Silva 1988; Macintosh and Phillips 1992; Figueiredo et al. 2006).

The land crab, *C. guanhumi* LATREILLE, 1828, is an important resource in the Brazilian coastal area. It is exploited by populations living in the region due its great economic value (Taissoun 1974; Wolcott 1988). This crab inhabits areas adjacent to mangroves, preferably above the upper inundation thresholds (Taissoun 1974). They depend on the coastal water environment for larval release (Hartnoll 1981). Ovigerous females migrate to the margin of the estuarine channels to release their larvae, which are dispersed to the open sea during the ebb tide (Shanks et al. 2002). In the open sea, the zoeal larvae pass through five

O. B. S. Galli (✉) · F. A. Abrunhosa
Instituto de Estudos Costeiros (IECOS), Universidade
Federal do Pará (UFPA), Campus Universitário de Bragança,
Alameda Leandro Ribeiro s/n, Aldeia, Bragança,
PA CEP 68600-000, Brazil
e-mail: orlandogalli@gmail.com; faraujo@ufpa.br

R. Y. Fujimoto
Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, Jardins,
Aracaju, SE CEP 49025-040, Brazil
e-mail: ryfujim@hotmail.com

stages of development before they undergo metamorphosis into megalopa. In the latter phase, they are able to settle and metamorphose into the post-larval juvenile I stage, which represents the early life of a benthic crab in estuaries. Subsequently, crabs migrate to adjacent areas of the estuary, above the high tide level (Costlow Jr and Bookhout 1968; Hadfield 1986; Caley et al. 1996; Anger 2001). Due to the dependency of the larval and post-larval life-stages of *C. guanhumi* on the estuarine environment, it is important to evaluate the sensitivity of these early life-stages to potential environmental stressors. Data are lacking on the effects of SMB on the land crab. The present study was conducted to determine the sensitivity of, larvae (zoea I and megalopa) and post-larvae (juvenile I) of the land crab *C. guanhumi* to SMB.

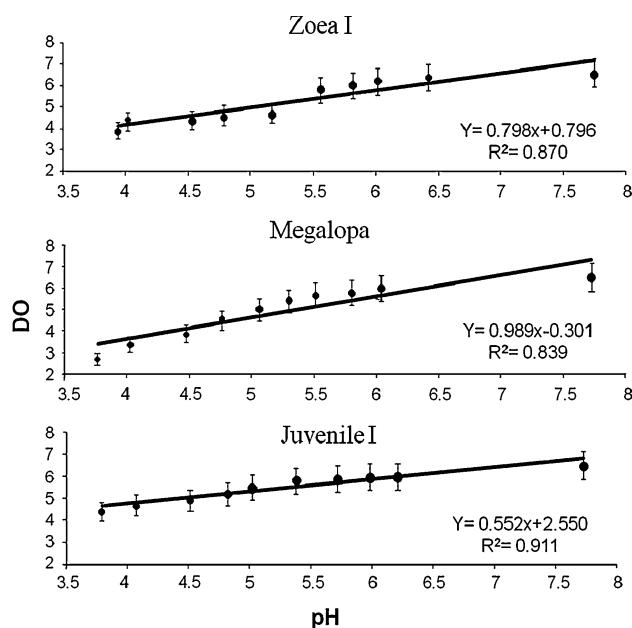
Materials and Methods

Three egg-bearing *C. guanhumi* females were collected from an estuarine creek close to the city of Caravelas, Bahia, northeastern Brazil. They were placed in tanks (with aeration) covered with black plastic material filled with marine water (30 ppt and pH 7.7 ± 1). The water employed in this study was collected from the abrolhos channel ($17^{\circ}42'495''$ S, $039^{\circ}00'002''$ W), Caravelas, Bahia, Brazil. After collection, the water was directed to the Laboratory of CEPENE-IBAMA (Brazilian governmental bureau), mechanically filtered ($10 \mu\text{m}$) and then placed in a 200 L constantly aerated plastic container equipped with a biological filter.

Approximately 1,000 zoea were collected and transferred to plastics beakers (300 mL) filled with marine water. They were kept for 24 h without food and subsequently used in toxicity tests. For the megalopa experiment, about 500 zoea I larvae were transferred to plastics beakers (300 mL) filled with marine water, and reared until metamorphosis into the megalopa stage. They were fed newly hatched *Artemia nauplii*. When individuals reached the megalopa stage, they were individualized to prevent cannibalism, acclimated for 24 h without food, and subsequently used in toxicity tests. In order to obtain juveniles I, some other megalopae (about 500 larvae) were reared. This group of individuals was fed *A. nauplii*. Once they reached the juvenile stage, individuals were acclimated for 24 h without food and subjected to the toxicity treatments. In order to evaluate the toxicological effects of SMB on larvae and post larvae, we determined the acute toxicity test measure of the 48 h $\text{CL}_{50\ldots 48\text{h}}$ (the lethal concentration to 50 % of the organisms exposed for a period of 48 h) from the IBAMA's manual (1987). Concurrently, following the same methodology described above, we carried out the standard test using KCl (potassium chloride) as the

reference substance to assess the quality of the set of organisms used in the experimental tests and validate the results.

After the acclimatization period, organisms were subjected to preliminary screening test using ample variations in SMB concentrations. The period of exposure for this experiment was 48 h. With this test we aimed to determine (1) the highest concentration of SMB that would result in no mortality; (2) the lowest concentration incurring in total mortality of organisms in the zoea I, megalopa and juvenile I stage. The results of the test were used to design the definitive test. For zoea I, the acclimatization period lasted 24 h. After that, 10 larvae were transferred into plastic containers (250 mL) filled with sea water (30 ppt). SMB at 6 different concentrations and a control treatment ($\text{Na}_2\text{S}_2\text{O}_5$, 0.0 mg/L) were set up, using five replicates per treatment. The containers were numbered in accordance with their concentrations. Salinity, dissolved oxygen, temperature and pH were recorded. For megalopa and juveniles I, the acclimatization lasted 48 h. Then, five individuals of each stage (megalopa and juvenile I) were subjected to six different concentrations of SMB and a control treatment ($\text{Na}_2\text{S}_2\text{O}_5$, 0.0 mg/L). Salinity, dissolved oxygen (DO), temperature and pH were recorded. The concentrations of SMB used in the preliminary tests were as follows: 100, 50, 25, 12.5, 6.25, 3.12 and 0.0 mg/L. Simultaneously, a preliminary test using potassium chloride (KCl) as the reference substance was conducted at concentrations of 400, 200, 100, 50, 25, 12.5 and 0.0 mg/L. Such experiment followed the same procedure as the SMB tests.


In the final test, after 24 h of acclimatization, zoea larvae I were subjected to nine different concentrations of SMB (12.5, 17.1, 21.8, 26.5, 31.2, 35.9, 40.6, 45.3 and 50.0 mg/L) and a control concentration ($\text{Na}_2\text{S}_2\text{O}_5$, 0.0 mg/L). Ten larvae per container were used at each test concentration, in five replicates. When testing the megalopa and juvenile I stages, the organisms were subjected to nine different concentrations of SMB (concentration range obtained from screening), plus the control solution ($\text{Na}_2\text{S}_2\text{O}_5$, 0.0 mg/L), after they had been acclimated for 48 h. Only one individual was placed in each container for the megalopa and juvenile I tests, to avoid cannibalism. Five larvae (5 replicates) and a control ($\text{Na}_2\text{S}_2\text{O}_5$, 0.0 mg/L) were used in each treatment. Individual mortality was recorded every 12 h until the end of experiment (48 h). The definitive test with potassium chloride (KCl) was carried out following the same methodology described for the definitive test with SMB, with concentrations of: 0.0, 100, 112.5, 125, 137.5, 150, 162.5, 175, 187.5, 200 mg/L.

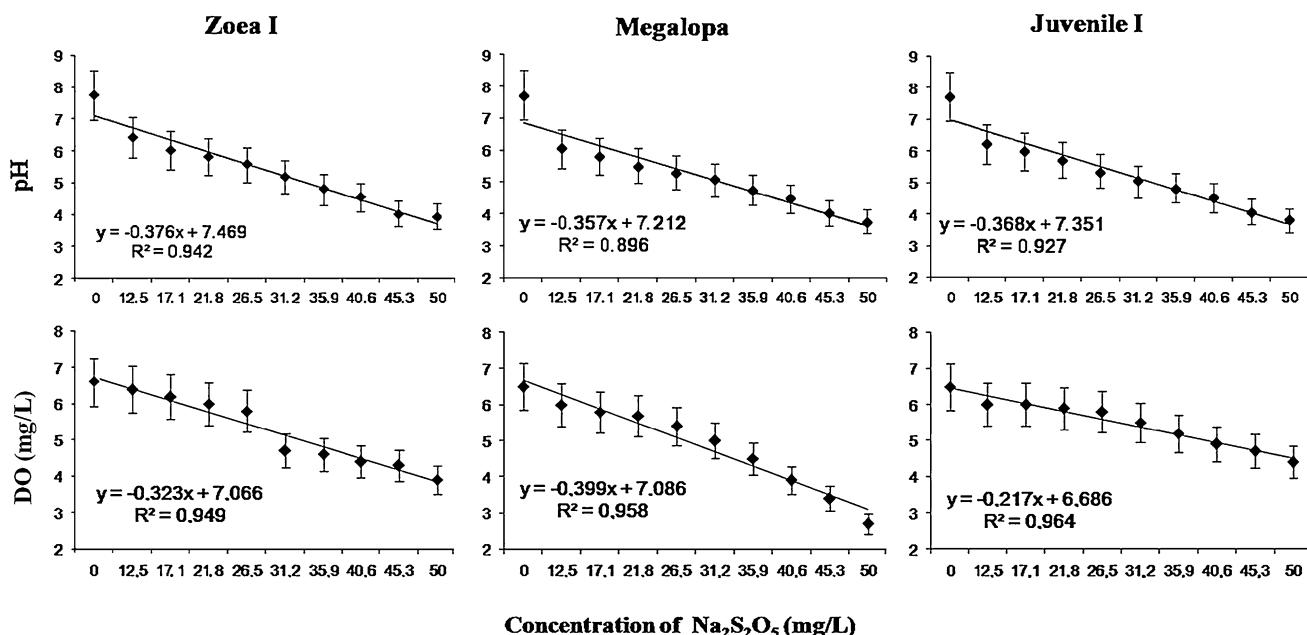
For zoea I, megalopa and juvenile I exposed to SMB for 48 h, the analysis of the LC_{50} values were calculated by the trimmed Spearman–Karbe method (Hamilton et al. 1977).

The straight lines equation in Excel 2003 was applied to analyze the chemical parameters of DO and pH at the different SMB test concentrations.

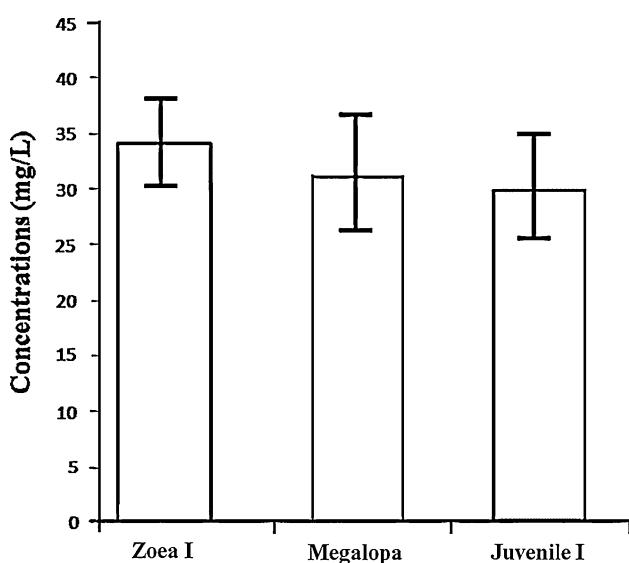
Results and Discussion

The analysis of the chemical data for the SMB tests on larvae (zoea and megalopa) and post-larvae (juvenile I) showed a significant variation in dissolved oxygen (DO) and pH (Fig. 1). The ranges for DO and pH in the control tanks were 6.5–6.7 and 7.73–7.77, respectively. This relationship between DO and pH, and concentration, is due to the reductive action of the SMB. Upon reacting with the OD in the solution it promotes a reduction, releasing SO₂ (sulfur dioxide) (Ogawa et al. 1983, 1985; Silva 1988; Meng and Zhang 1990). SO₂ combines easily with water, causing another chemical reaction that results in the production acidic by-products such as sodium acid sulfate (Ogawa et al. 1995; Paiva 2004; Aragão et al. 2008; Carvalho et al. 2011), sulfuric acid (H₂SO₄) and sulfuric acid (H₂SO₃) (Nickelson and Cox 1977; Fazio and Warner 1990; Atkinson et al. 1993). The decreases in the DO and pH corresponded to increases in the concentrations of SMB. The lowest values were observed in the group that had the highest concentration of SMB (Na₂S₂O₅, 50 mg/L) (Fig. 2). The salinity and temperature varied only slightly in the tests, averaging at 30 ± 1°C and 27° ± 1°C, respectively.

Fig. 1 Relationship between the dissolved oxygen (DO) and pH for zoea I, megalopa and juvenile I at the end of experiment (48 h)


The dissolved oxygen (DO) after 48 h ranged from 6.6 (Na₂S₂O₅, 0.0 mg/L) to 3.9 (Na₂S₂O₅, 50 mg/L) for zoea I ($y = 0.798x + 0.976$; $R^2 = 0.870$), 6.5 (Na₂S₂O₅, 0.0 mg/L) to 2.7 (Na₂S₂O₅, 50 mg/L) for megalopa ($y = 0.989x - 0.301$; $R^2 = 0.839$) and 6.5 (Na₂S₂O₅, 0.0 mg/L) to 4.4 (Na₂S₂O₅, 50 mg/L) for juvenile I ($y = 0.552x + 2.550$; $R^2 = 0.911$) (Fig. 2). In the control groups (Na₂S₂O₅, 0.0 mg/L), few changes were observed in the DO at the end of 48 h, which ranged from 6.7 to 6.6 mg/L, 6.6 to 6.5 mg/L and from 6.7 to 6.5 mg/L for zoea I, megalopa and juvenile I organisms, respectively (Fig. 2).

At the end of 48 h a considerable decrease in the pH was observed. It ranged from 7.75 (Na₂S₂O₅, 0.0 mg/L) to 3.94 mg/L (Na₂S₂O₅, 50 mg/L) for zoea I ($y = -0.074x + 7.494$; $R^2 = 0.985$), 7.73 (Na₂S₂O₅, 0.0 mg/L) to 3.76 (Na₂S₂O₅, 50 mg/L) for megalopa ($y = -0.071x + 7.260$; $R^2 = 0.961$) and 7.73 (Na₂S₂O₅, 0.0 mg/L) to 3.79 (Na₂S₂O₅, 50 mg/L) for juvenile I ($y = -0.073x + 7.385$; $R^2 = 0.979$) (Fig. 2). Few variations in pH were observed in the control groups (Na₂S₂O₅, 0.0 mg/L) where ranges were 7.77–7.75 (zoea I), 7.74–7.73 (megalopa), and 7.74–7.73 (juvenile I) (Fig. 2).


The definitive test with KCl resulted in 48 h LC₅₀ values of 138.9 mg/L (CI = 131.0–147.2 mg/L) for zoea I larvae, 137.5 mg/L (CI = 130.3–147.2 mg/L) for megalopa larvae, and 135.3 mg/L (CI = 123.1–147.1 mg/L) for juveniles I animals. Because the data presented here are new with respect to employing these organisms in acute toxicity tests, our results for the KCL as a reference substance should be tested in future studies in order to validate the set of test organisms.

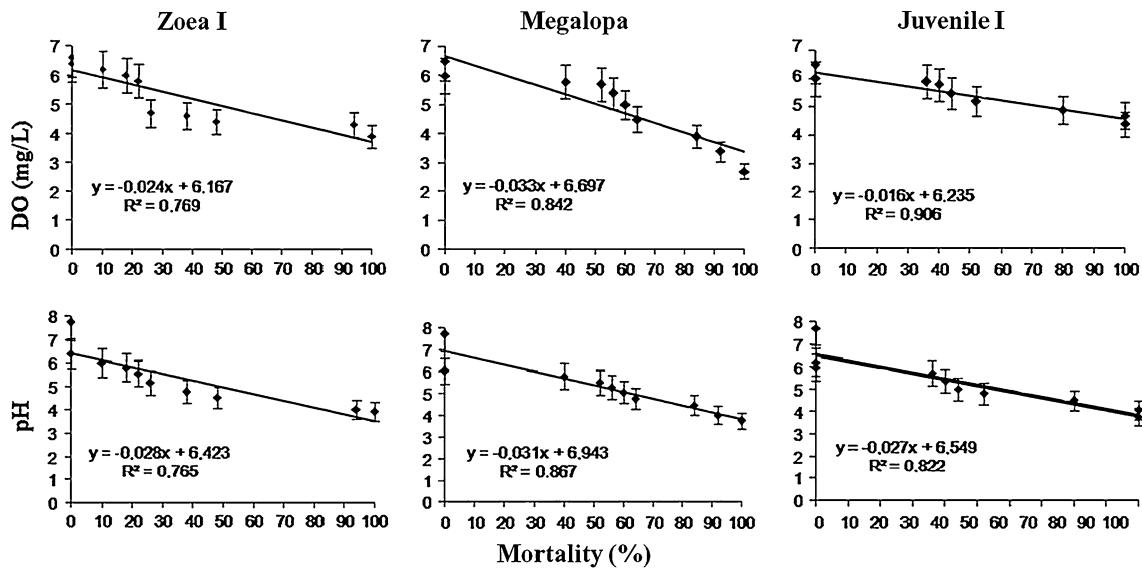
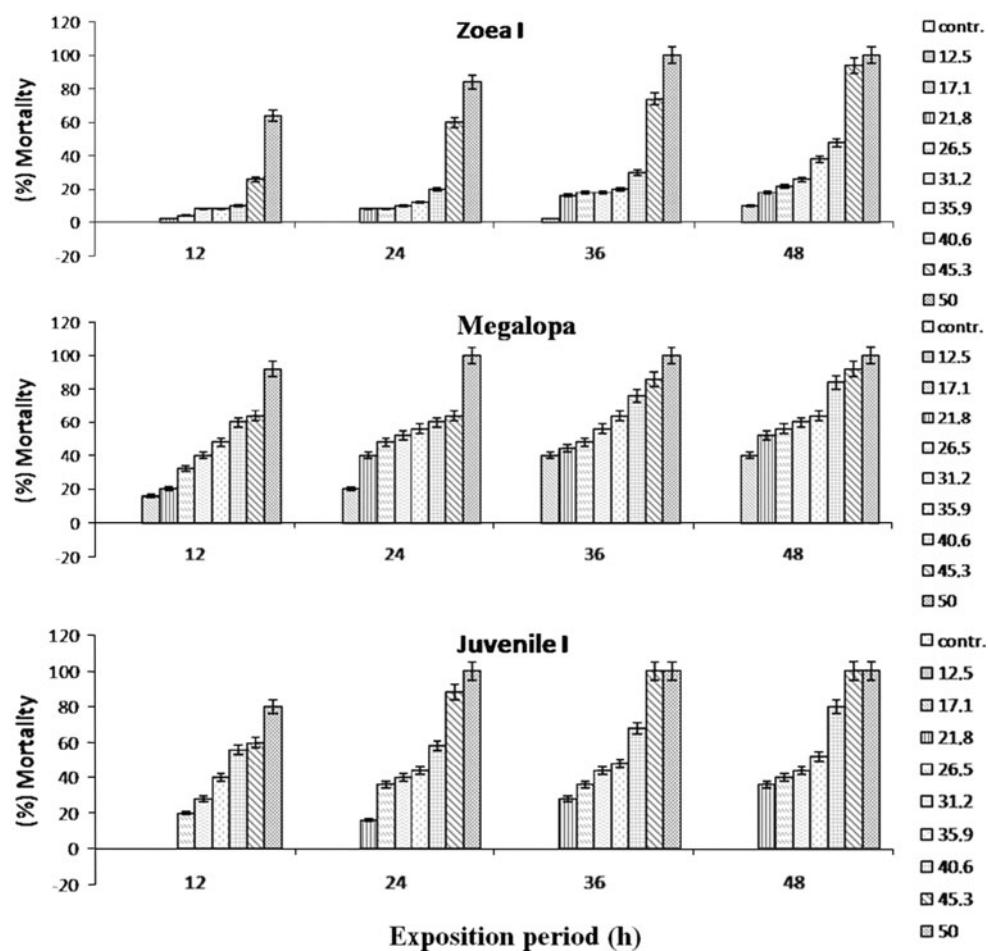
The larval and juvenile life-stages were quite similar in their sensitivities to SMB. LC₅₀ values after 48 h of exposure were 34.1 ± 1.1 mg/L (CI = 30.4–38.3 mg/L), 31.1 ± 1.9 mg/L (CI = 26.4–36.7 mg/L), and 30.6 ± 0.5 mg/L (CI = 26.4–35.5 mg/L) for zoea I larvae, megalopa larvae, and juvenile I animals, respectively (Fig. 3).

At the end of the experiment (48 h), total mortality (100 %) was observed for both larval stages (zoea I and megalopa) and for the post-larval juvenile I stage at the highest concentration (50 mg/L of SMB). In tests with megalopa and juvenile I animals, 100 % mortality was observed after 24 h of exposure to a solution of 50 mg/L of SMB. Exposure of juvenile I animals to a concentration of 45.3 mg/L SMB resulted in total mortality after 36 h of exposure. This did not happen when other stages were tested, and indicated that the juvenile I life-stage had greater sensitivity to the toxic effects of the contaminant. In the two lowest concentrations of SMB (12.5 and 17.1 mg/L) no mortality was observed, even after 48 h, demonstrating that it had no immediate effect on the larvae and post-larvae tested (Fig. 4). These data, despite differences between developmental stages, are compatible with the

Fig. 2 Relation between dissolved oxygen (DO) and pH with sodium metabisulphite (SMB) concentrations in the end of the experiment (48 h)

Fig. 3 LC_{50...48 h} for the different stages of development of *C. guanhumi* when exposed to the SMB, with their confidence interval (CI) of 95 % upper (Zoae I, 38.3; Megalopa, 36.7 and Juvenile I, 35.5) lower (Zoae I, 30.4; Megalopa, 26.4 and Juvenile I, 26.4)

idea that the mortality rate of organisms is dependent on the duration of exposure, as well as toxicant concentration.



One result of the experimental tests is that zoae I have low mortality after 12 h of exposure, even when the concentrations of SMB (50 mg/L) were high. This result, coupled with the characteristics of the estuary and the export strategy of zoae, may indicate that SMB contamination may not be very relevant to this stage, because the individuals will be transported to coastal areas without

it or with much diluted concentrations of SMB. However, despite the low mortality, chronic effects that may cause future morpho-physiological problems may result from even a short exposure. Further studies on the subject should be conducted, while taking into account the relative toxicity to SMB.

Zoae I larvae have also been shown to be slightly more tolerant of SMB than megalopa larvae and juvenile I stage animals. To the zoae I larvae, this may be due to the high levels of reserves arising from the egg vitellus, which confer some natural resistance to the larvae (Burggren and Mc Mahon 2008; Anger 1995; Lindquist and Carroll 2004; Lindquist et al. 2009) by providing a natural protection from the toxic substances found in the environment (Anger and Dawirs 1981; Anger et al. 1985; Anger 1996; Souza et al. 2006). When we compare the concentrations of SMB set by the FDA (12.5 g/L SMB) (Valenca and Mendes 2004) with those used in our shrimp rearing study (<50 mg/L), a big difference becomes obvious. If we then compare the FDA approved concentrations with those usually employed in shrimp farms (between 50 and 100 g/L of SMB (Valenca and Mendes 2004), the environmental threat becomes even more obvious. This fact is of particular concern when discharges occur in small bodies of water that do not have large volume to dilute the contaminant.

The DO and pH were correlated with the mortality of the larvae and post-larvae of *C. guanhumi* (Fig. 5). An increased vulnerability to this salt follows the development stages: zoae I larvae are slightly more tolerant, compared with the megalopa and juveniles. The greater tolerance to

Fig. 4 Relationship between the mortality of the zoea I, megalopa and juvenile I of the *C. guanhumi* with SMB concentrations (mg/L) and time of exposure (h)

Fig. 5 Relationship between the DO and pH with the mortality of the zoea I, megalopa and juvenile I at the end of the experiment (48 h)

unfavorable environmental conditions displayed by individuals in the zoea I stage in this study appears to be common in estuarine species. According to Anger (2001)

the larval stages of estuarine species have morpho-physiological adaptations which, during development and transition to the benthic environment, make them less likely to

survive in adverse abiotic conditions. Among those conditions, the pH and DO are factors that have the greatest influences on the development of larvae of brachyuran crustaceans (Burggren and Mc Mahon 2008; Lindquist et al. 2009).

The decrease in DO in the water and consequent acidification may be considered as the main cause of mortality in larvae (zoea I and megalopa) and post-larvae. Badaró-Pedroso et al. (2002) reported that acute toxicity in conditions of dissolved oxygen and pH may contribute to the mortality of shrimp. This lethal effect in the environment results mainly from low DO, which is known to cause death in other animals and plants as well (Aragão et al. 2008).

In our experiment with zoea I, megalopa and juvenile I, the DO decreased with concentrations of SMB increasing. The reaction of the SMB with the oxygen in the water results in sodium acid sulphate and bisulphate ions, and consequently in a reduction in dissolved oxygen (de Araújo and de Araújo 2004; Cruz 2004; Aragão et al. 2008), and also in the pH. The water then becomes acidic, which may influence the homeostasis of ecosystems (Silva 1988). The reaction of the SMB with the water indicates that indiscriminate discharge of residues from shrimp tanks into adjacent ecosystems pose an environmental risk. Mangroves, estuaries and coastal areas, mainly in the northeastern region of Brazil, exhibit abiotic characteristics, with average values of pH >6 and >4 dissolved oxygen (Paiva et al. 2008). Due to those conditions they are regarded as a marine life nursery and as an important natural resource for the majority of the people who live near the coast.

Thus, an effective monitoring of shrimp farming and a strategy to mitigate its effects are necessary to prevent damage caused by the improper use of SMB by inland shrimp farming. Inappropriate application rates of SMB have been reported in shrimp farms in Brazil, and no recommended criterion for the use of this substance has been set (Figueiredo et al. 2005). Despite the extensively reported dangerous toxic effects of metabisulphite on human beings and the environment (de and de 2004; Figueiredo et al. 2005; Aragão et al. 2008), little information on how it affects aquatic organisms is available. For this reason, in order to design appropriate environmental laws for the manipulation of the SMB in estuarine effluents, further studies are needed. The results of this study indicate that SMB has an elevated toxicological effect on the early life stages of the land crab *C. guanhumi*. Small concentrations of SMB are sufficient to cause damage in larvae and post-larvae, and the primary causative agent of mortality is the change in dissolved oxygen and pH resulting from chemical reactions induced by the contaminant.

References

Anger K (1995) The conquest of freshwater and land by marine crabs: adaptations in life-history patterns and larval bioenergetics. *J Exp Biol Mar Ecol* 193(1–2):119–145

Anger K (1996) Physiological and biochemical changes during lecithotrophic larval development and early juvenile growth in the Northern stone crab, *Lithodes maja* (Decapoda, Majidae). *Mar Biol* 126:283–296

Anger K (2001) The biology of decapod crustacean larvae, Crustacean Issues 14. A.A. Balkema, Lisse, p 419

Anger K, Dawirs RR (1981) Influence of starvation on the larval development of *Hyas araneus* (Decapoda: Majidae). *Helgol Meeresunters* 34:287–311

Anger K, Storch V, Anger V, Capuzzo M (1985) Effects of starvation on moult cycle and hepatopancreas of stage I lobster (*Homarus americanus*) larvae. *Helgol Meeresunters* 39:107–116

Aragão JS, Castro CB, Costa-Lotufo LV (2008) Toxicidade do metabissulfito de sódio em *Mysidopsis juniae*. *Arq Ciênc Mar* 41(1):24–29

Atkinson DA, Sim CT, Grant JA (1993) Sodium metabisulfite and SO₂ release: an underrecognized hazard among shrimp fishermen. *Ann Allergy* 71:563–566

Badaró-Pedroso C, Reynier MV, Prósperi VA (2002) Testes de toxicidade aguda com misidáceos—ênfase nas espécies *Mysidopsis juniae* e *Mysidium gracile* (Crustacea: Mysidacea), p.123–139 In: Nascimento IA, Sousa ECPM, Nipper M (eds.) Métodos de ecotoxicologia marinha. Aplicações no Brasil. Editora artes gráficas e Indústria Ltda, pp 262

Barbiere Jr RC, Ostrensky NA (2002) Camarão marinho: engorda. Editora Aprenda Fácil, Viçosa, p 351

Burggren WW, Mc Mahon BR (2008) Biology of the Land Crabs. Cambridge University Press, Cambridge, p 479

Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. *Annu Rev Ecol Syst* 27:477–500

Carvalho IMCMM, Calvalcante AAM, Dantas AF, Pereira DLA, Rocha FCC, Oliveira FM, Silva J (2011) Environmental mutagenicity and toxicity caused by sodium metabisulfite in sea shrimp harvesting in Piauí, Brazil. *Chemosphere* 82:1056–1061

Clay JW (1997) Toward sustainable shrimp aquaculture. *J World Aquac Soc* 28(3):32–37

Costlow JD Jr, Bookhout CG (1968) The complete development of the land-crab, *Cardisoma guanhumi* Latreille in the laboratory (Brachyura, Gecarcinidae). *Crustaceana Suppl* (2): 259–270

Cruz RRM (2004) O uso do metabissulfito de sódio na criação de camarão marinho em cativeiro e seu perigo para o trabalhador e o meio ambiente. Monografia de especialização em gestão ambiental—Universidade de Fortaleza, Fortaleza, pp 46

de Araújo FR, de Araújo YM (2004) Metabissulfito de sódio e SO₂: perigo químico oculto para os trabalhadores que realizam a despessa do camarão em cativeiro. *Rev ABCC* Ano 6, no 4, Edição 10

FAO—Food and agriculture organization of the United Nations (2006) Code of conduct for responsible fisheries, Rome, pp 41

Fazio T, Warner CR (1990) A review of sulfites in food: analytical methodology and reported findings. *Food Addit Contam* 7:433–454

Figueiredo MCB, Araújo LFP, Gomes RB, Rosa MF, Paulino WD, Morais LFS (2005) Impactos ambientais do lançamento de efluentes da carcinicultura em águas interiores. *Eng Sanit Ambient* 10(2):167–174

Figueiredo MCB, Araújo LFP, Rosa MF, Morais LFS, Paulino WD, Gomes RB (2006) Impactos ambientais da carcinicultura de águas interiores. *Eng Sanit Ambient* 11(3):231–240

Hadfield MG (1986) Settlement and recruitment of marine invertebrates: a perspective and some proposals. *Bull Mar Sci* 39(2): 418–425

Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman–Karber method for estimating median lethal concentration in toxicity bioassay. *Environ Sci Technol* 11(7)

Hartnoll RS (1981) Evolution, systematic and geographical distribution. In: Burggren WW, Mc Mahon BR (eds) *Biology of the Land Crabs*. Cambridge University Press, Cambridge, pp 6–54

IBAMA—Instituto Brasileiro do Meio Ambiente (1987) Avaliação da toxicidade aguda para microcrustáceos. In: manual de testes para avaliação da ecotoxicidade de agentes químico, Brasília. pp 128

Jamieson DM, Guill MF, Wray BB, May JR (1985) Metabisulfite sensitivity: case report and review. *Ann Allergy* 54:115–121

Lindquist ES, Carroll RC (2004) Differential seed and seedling predation by crabs: impacts on tropical forest composition. *Oecologia* 141:661–667

Lindquist ES, Krauss KW, Green PT, O'Dowd DJ, Sherman PM, Smith TJ (2009) Land crabs as key drivers in the coastal forest recruitment. *Biol Rev* 84:203–223

Macintosh DJ, Phillips MJ (1992) Environmental considerations in shrimp farming. *Infofish Int* 92(6):38–42

Meng Z, Zhang L (1990) Chromosomal aberrations and sister chromatid exchanges in lymphocytes of workers exposed to sulphur dioxide. *Mutat Res* 241:15–20

Nickelson R, Cox B (1977) Stop shrimp “black spot”. *Fish Mar Adv Bull* 77:504–510

Ogawa M, Kurotsu T, Ochiai I, Kozima TT (1983) Black discoloration of spiny lobster of genus *Panulirus* White-II. Mechanism of black discoloration of spiny lobster tails stored in ice. *Bull Jap Soc Sci Fish/Nippon Suisan Gakkai shi I* 49(7):1065–1075

Ogawa M, Magalhães-Neto EO, Viana EMQ, Tozima TT (1985) Influence of freezing, storing and thawing on melanin formation in lobster tails. *Bull Jap Soc Sci Fish/Nippon Suisan Gakkai shi I* 51(1):127–131

Ogawa TBN, Tsuji HNK, Kitamura K (1995) Identification of the soybean allergenic protein, Gly m Bd 30 K, with the soybean seed 34 kDa oil-body-associated protein. *Biosci Biotechnol Biochem* 57(6):1030–1033

Paiva AB (2004) Avaliação de risco ambiental utilizando parâmetros físico-químicos e biológicos no rio canoas/sc. dissertação, Universidade federal de Santa Catarina, Brasil

Paiva ACG, Chaves PTC, Araújo ME (2008) Estrutura e organização trófica da ictiofauna de águas rasas em um estuário tropical. *Rev Bras Zoo* 25:647–661

Phillips MJ, Lin CK, Beveridge MCM (1993) Shrimp culture and the environment: lessons from the world's most rapidly expanding warm water aquaculture sector. In: Pulin RSV, Rosenthal H, Maclean JL (eds) *Environment and aquaculture in developing countries: conference proceedings*. International center for living aquatic resources management, vol 1, pp 171–196

Primavera JH (1994) Environmental and socioeconomic effects of shrimp farming: the Philippine experience. *Infofish Int* 1(94): 44–49

Rodrigues J (2005) Carcinicultura marinha desempenho em 2004. *Rev Assos Bras Criad Camara* 7(2):38–44

Shanks AL, Largier J, Brink L, Brubaker J, Hooff R (2002) Observations of meroplankton during a downwelling event and associated intrusion of the Chesapeake Bay estuarine plume. *J Plankton Res* 24(4):391–416

Silva RR (1988) Considerações sobre o uso e o mal uso de sais de sulfito em crustáceos. In: anais seminário sobre controle de qualidade na indústria de pescado, Santos. Santos: Loyola, pp 244–259

Souza KPM, Costa RM, Abrunhosa FA, Pereira LCC (2006) Efeito de diferentes dietas sobre a muda dos estágios iniciais de *Ucides cordatus* (LINNAEUS, 1763) (Decapoda: Ocypodidae). *Bol Mus Para Emílio Goeldi* 1(3):97–102

Taissoun E (1974) El cangrejo de tierra *Cardisoma guanhumi* (Latreille) en Venezuela. *Bol cent invest Biol* 10:9–41

Valença AR, Mendes GN (2004) O metabissulfito de sódio e seu uso na carcinicultura. *Panor Aquic* 14(85):57–59

Wolcott TG (1988) Ecology. In: Burggren WW, McMahon BR (eds) *Biology of the land crabs*. Cambridge University Press, Cambridge, pp 55–96